Langkau ke Kandungan Langkau ke Navigasi

Our Animal Nutritionist, Dr Yumin Bao, has recently reviewed the ideal amino acid profile in broiler chicken diets on alleviating gut disturbance. He indicates that as dietary Lys concentration is increased, all other essential amino acids need also to be increased. This paper has been accepted as a poster at the 30th Australian Poultry Synopsis in February 2019. Read below a summary.

Ideal amino acid profile and chicken gut disturbance: a review

By Dr Yumin Bao

Introduction

There is considerable interest in the development of low protein diets balanced with supplemental amino acids for broiler chickens due to economic, environmental and bird welfare advantages (Moss et al., 2018). However, under commercial feeding conditions, chickens are exposed to various challenges of infectious and non-infectious origin. For challenges of infectious origin, even without any clinical signs of disease, animals affected by chronic subclinical disease or intestinal parasites use nutrients less efficiently for production than healthy animals. Challenges of non-infectious origin such as heat stress, mycotoxins and other anti-nutritional factors also have impacts on nutrient digestibility. Therefore, it may be necessary to set the intestinal requirements of some amino acids higher than recommended in order to avoid compromising the immune system (Bortoluzzi et al., 2018). It is reported that reduced protein diets may result in amino acids being redistributed away from growth and production processes, toward intestinal cells involved in immune and inflammatory responses (Le Floc’h  et al., 2004). Further, reduced-protein diets may change amino acid availability and promote negative interactions among amino acids (Nascimento et al., 2016). In addition, an unbalanced supply of amino acids in the diet can be deleterious to the immune system (Li et al., 2007). Thus, an ideal balance of AA is crucial for broiler chicken gut health in particular if birds are reared without antibiotics.

Amino acid nutrition and disturbance of intestinal function

Necrotic enteritis (NE) is a multifactorial, bacterial disease caused by Clostridium perfringens (CP) which produces a variety of extracellular toxins and invasive enzymes in the broiler chicken gut. It is widely believed that coccidiosis, wheat or barley based diets with a high proportion of fish meal and removal of in-feed antibiotics are major disposing factors (Kaldusdal et al., 2016). Due to a damaged intestinal mucosa, subclinical NE usually results in poor body weight gain associated with reduced feed intake (Keerqin et al., 2017), and it is assumed that needs for some functional amino acids for immunity will be met by mobilizing skeletal muscle protein (Reeds and Jahoor, 2001). Compared to soybean meal, addition of fish meal might result in deficiency in arginine (Arg), leucine (Leu), isoleucine (Ile), aspartic acid (Asp), histine (His), phenylalanine (Phe) and glutamic acid (Glu) (Figure 1, adapted from Lemme et al., 2004) . Compared to maize, use of wheat or barley might lead to a diet deficient in alanine (Ala), Leu and Asp (Figure 2, adapted from Lemme et al., 2004). Adding Arg has been demonstrated to reduce intestinal mucosal disruption during a coccidial challenge (Tan et al., 2014). Leu, Ile, Asp and Glu play vital roles in the metabolism and function of leucocytes and lymphocytes. Glutamine is important for maintaining the integrity of the gut barrier and the structure of the intestinal mucosa. Increasing total methionine levels from 0.35 to 1.2% in the diet of chickens infected with Newcastle Disease virus markedly enhanced immune responses: T-cell proliferation, plasma IgG levels, leucocyte migration and antibody titres (Li et al., 2007). Considering that the intestinal immune system is responsible for initiating and propagating responses to commensal and pathogenic microorganisms, ideal AA profile may play an important role in alleviating chicken gut disturbance.

Ideal AA profile for broiler chickens

The ideal AA profile, with AA in ratio to lysine, was first proposed and tested in broiler chickens by Baker and Han (1994). Because the standardized ileal digestibility (SID) values of AAs are more likely to be additive in mixed diets, most ideal AA profiles for broiler chickens are provided based on SID values. Table 1 summarizes several ideal AA profiles based on essential AA SID values. Although there are no significant differences in AA ratios to SID lys among those ideal AA profiles, dietary SID Lys concentration will have strong impact on the order of dietary limiting AA.  For a typical wheat-soybean meal based diet, 1.20% SID Lys was perfectly matched the ideal AA profile recommended for Cobb 500 chickens (Figure 3). However, compared with the ideal AA profile recommended by Rostagno (Nascimento et al., 2016) (Figure 4), almost all essential amino acids were deficient in this diet, potentially disturbing gut health of the bird.

Conclusion

An ideal AA profile in broiler chicken diets may alleviate gut disturbance. When dietary Lys concentration is increased, other essential AA concentrations also need to be increased accordingly.

Kembali ke semua Berita

Dihantar 7 Mac 2024 dalam Animal Nutrition

The new feed enzyme – Glucose Oxidase

It is well known that in the current floor pen with deep litter system, day old broiler chickens could benefit from non-starch polysaccharides components in the litter to establish the dynamic microbiota. However, when the intestinal...

Dihantar 3 Mac 2024 dalam Announcements

Redox Limited Joins S&P/ASX 300 Index

Redox Limited (ASX: RDX) is pleased to announce that Redox has been selected for inclusion in the Standard & Poor’s (“S&P”)/ASX 300 Index by the S&P Dow Jones effective prior to ASX market opening on March 18,...

Dihantar 26 Feb 2024 dalam Animal Nutrition

Coated Urea: Unlocking Ruminant Nutrition

Rumen microorganisms can utilize non-protein nitrogen (NPN) such as ammonia to synthesis rumen microbial proteins for cattle and sheep. Urea is a cheap source of NPN but the hydrolysis rate of urea in the rumen is speedy and exceeds the...